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1 Differential Entropy and the Additive White Gaussian
Noise Channel Model

1.1 Differential entropy

Let X be a real-valued random variable with density, i.e.

P(X ∈ [a, b)) =

∫ b

a
f(x) dx

for some nonnegative function f .

Definition 1.1. The differential entropy of X is

h(f) := −
∫ ∞
−∞

f(x) log f(x) dx.

This need not be well-defined (an example is provided in Handout 7), so when we talk
about h(f), we will assume it exists.

Example 1.1. Let X ∼ Unif([a, b]) with density

f(x) =

{
1
b−a x ∈ [a, b]

0 otherwise.

Then

h(f) =

∫ b

a

1

b− a
log(b− a) dx = log(b− a).

Note that if b− a < 1, this is negative. So h(f) is very different from entropy.

Example 1.2. Let X ∼ N(µ, σ2) with density

f(x) =
1√

2πσ2
e−(x−µ)2/(2σ).
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Then

h(f) = (log e)

∫ ∞
−∞

f(x)

[
(x− µ)2

2σ2
+

1

2
ln(2πσ2)

]
dx

= (log e)

[
1

2
+

1

2
ln(2πσ2)

]
=

1

2
log(2πeσ2).

1.2 Connection to entropy

Here is the connection between differential entropy and an underlying entropy. Imagine
quantizing R at scale ∆ with ∆→ 0.

We get a discrete probability distribution having probability∫ k∆+ ∆
2

k∆−∆
2

f(x) dx at k

as an approximation to a random variable with density f . Think of the entropy of this
approximation. This is

−
∑
k∈Z

(∆f(k∆) + o(∆)) log(∆f(k∆) + o(∆))− log ∆−∆
∑
k∈Z

f(k∆) log f(k∆) + o(∆).

So we can think of h(f) as the amount of entropy of a quantized pproximation about
− log ∆ as ∆→ 0.

This − log ∆ is a problem because − log ∆→∞ as ∆→ 0.

1.3 Relative entropy

However, this quantization problem does not show up for relative entropy.

Definition 1.2. Given two probability densities f and g, the relative entropy is

D(f || g) :=

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx.
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Note that in writing∑
k∈Z

(∆f(k∆) + o(∆)) log
∆f(k∆) + o(∆)

∆gf(k∆) + o(∆)
,

the ∆s in the log cancel.
The relative entropy will be nonnegative by convexity of u 7→ u log u because it is∫ ∞

−∞
g(x)

f(x)

g(x)
log

f(x)

g(x)
dx.

1.4 Joint differential entropy

Definition 1.3. The joint differential entropy of X1, . . . , Xn (real-valued random vari-
ables with a joint density f) is

h(X1, . . . , Xn) = −E[log f(X1, . . . , Xn)].

Example 1.3. The most important example is when X1, . . . , Xn are jointly Gaussian
random variables with invertible covariance matrix:X1

...
Xn

 ∼ N

m1

...
mn

 ,K
 ,

where K is a symmetric, positive definite matrix. The joint density is

f(x1, . . . , xn) =
1

(2π)n/2(detK)1/2
e−

1
2

(x−m)>K−1(x−m).

The joint differential entropy is

h(X1, . . . , Xn) =
1

2
log((2πe)n detK).

This can be understood by diagonalizing K. K = U>DU , where U>U = I and D =
diag(σ2

1, . . . , σ
2
n). Then

h(X1, . . . , Xn) =
n∑
`=1

1

2
log(2πeσ2

` ).

1.5 Mutual information

If X and Y have joint density f(x, y), then they will have marginal densities f(x) and f(y)
respectively.
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Definition 1.4. The mutual information is defined as

I(X;Y ) = D(f(x, y) || f(x)f(y)).

This will turn out to be

I(X;Y ) = h(X) + h(Y )− h(X,Y ),

when this expression makes sense. This will also be

I(X;Y ) = h(X)− h(X | Y )

, if these quantities exist, where h(X | Y ) is the conditional differential entropy.

Definition 1.5. The conditional differential entropy is

h(X | Y ) =

∫ ∞
−∞

f(y)h(X | Y = y) dy,

where

h(X | Y = y) = −
∫ ∞
−∞

f(x | y) log f(x | y) dx.

1.6 Chain rules for differential entropy

We can write some chain rules.

Proposition 1.1 (Chain rule for differential entropy). When all these quantities make
sense,

h(X1, . . . , Xn) = h(X1) + h(X2 | X1) + h(X3 | X1, X2) + · · ·+ h(Xn | X1, . . . , Xn−1).

Proposition 1.2 (Chain rule for mutual information). When (X,Y1, . . . , Yn) have a joint
density,

I(X;Y1, . . . , Yn) = I(X;Y1)+I(X;Y2 | Y1)+I(X;Y3 | Y1, Y2)+· · ·+I(X;Yn | Y1, . . . , Yn−1).

1.7 Basic properties of differential entropy

Proposition 1.3. For any constant c, h(X + c) = h(X).

Proof. Adding c just translates the density.

Proposition 1.4. If c 6= 0, then h(cX) = h(X)− log |c|.
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Proof. The density of cX is 1
|c|f(x/c). So

h(cX) =

∫ ∞
−∞

1

|c|
f(x/c) log

1

|c|
f(x/c) dx

= h(X)− log |c|.

Remark 1.1. This is consistent with X ∼ N(0, σ2) ⇐⇒ cX ∼ 0, c2σ2). Here, h(X) =
1
2 log(2πeσ2) and h(cX) = 1

2 log(2πeσ2) + log |c|.

Proposition 1.5. If E[X] = 0 and E[X2] = σ2, then

h(X) ≤ 1

2
log(2πeσ2).

This upper bound is the entropy of the Gaussian.

Proof. Let φ(x) denote the N(0, σ2) density, i.e. φ(x) = 1√
2πσ2

e−x
2/(2σ2). Write

0 ≤ D(f || φ)

=

∫ ∞
−∞

f(x) log
f(x)

φ(x)

= −h(f) + (log e)

∫ ∞
−∞

f(x)

[
1

2
ln(2πσ2) +

x2

2σ2

]
dx

= −h(f) +
1

2
log(2πeσ2).

1.8 The additive white Gaussian noise channel model

This is a discrete time model. At each channel use, the input is a real number, say x ∈ R.
The output is a real number Y . Conditioned on X = x, Y ∼ N (x, σ2), where σ2 is the
variance of the noise.

Consider an input power constrained scenario and block based communication: We have
an encoding map

en : [Mn]→ R

and a decoding map
dn : Rn → [Mn], Y n(m).
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Here Xn is the output of en, and Yn is the input of dn.
Conditioned on Xn(m) = xn,

Y n ∼ N (xn, σ2I),

i.e. the noise is iid over time. In other words,

f(yn | xn) =
n∏
i=1

1√
2πσ2

e−(yi−xi)/(2σ).

The power constraint P requires that each Xn(m) satisfies

n∑
i=1

(Xi(n))2 ≤ nP.

Intuitively, Mn can be on the scale of

Vn(
√
n(P + σ2))

Vn(
√
nσ2)

,

where Vn(R) denotes the colume of the ball in Rn of radius R.
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