Electrical Engineering 229A Lecture 18 Notes

Daniel Raban

October 26, 2021

1 Differential Entropy and the Additive White Gaussian Noise Channel Model

1.1 Differential entropy

Let X be a real-valued random variable with density, i.e.

$$\mathbb{P}(X \in [a,b)) = \int_{a}^{b} f(x) \, dx$$

for some nonnegative function f.

Definition 1.1. The differential entropy of X is

$$h(f) := -\int_{-\infty}^{\infty} f(x) \log f(x) \, dx.$$

This need not be well-defined (an example is provided in Handout 7), so when we talk about h(f), we will assume it exists.

Example 1.1. Let $X \sim \text{Unif}([a, b])$ with density

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$h(f) = \int_{a}^{b} \frac{1}{b-a} \log(b-a) \, dx = \log(b-a).$$

Note that if b - a < 1, this is *negative*. So h(f) is very different from entropy.

Example 1.2. Let $X \sim N(\mu, \sigma^2)$ with density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/(2\sigma)}.$$

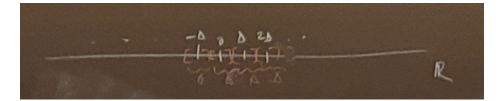
Then

$$h(f) = (\log e) \int_{-\infty}^{\infty} f(x) \left[\frac{(x-\mu)^2}{2\sigma^2} + \frac{1}{2} \ln(2\pi\sigma^2) \right] dx$$

= $(\log e) \left[\frac{1}{2} + \frac{1}{2} \ln(2\pi\sigma^2) \right]$
= $\frac{1}{2} \log(2\pi e \sigma^2).$

1.2 Connection to entropy

Here is the connection between differential entropy and an underlying entropy. Imagine quantizing \mathbb{R} at scale Δ with $\Delta \rightarrow 0$.



We get a discrete probability distribution having probability

$$\int_{k\Delta - \frac{\Delta}{2}}^{k\Delta + \frac{\Delta}{2}} f(x) \, dx \quad \text{at } k$$

as an approximation to a random variable with density f. Think of the entropy of this approximation. This is

$$-\sum_{k\in\mathbb{Z}} (\Delta f(k\Delta) + o(\Delta)) \log(\Delta f(k\Delta) + o(\Delta)) - \log \Delta - \Delta \sum_{k\in\mathbb{Z}} f(k\Delta) \log f(k\Delta) + o(\Delta).$$

So we can think of h(f) as the amount of entropy of a quantized pproximation about $-\log \Delta$ as $\Delta \to 0$.

This $-\log \Delta$ is a problem because $-\log \Delta \to \infty$ as $\Delta \to 0$.

1.3 Relative entropy

However, this quantization problem does not show up for relative entropy.

Definition 1.2. Given two probability densities f and g, the **relative entropy** is

$$D(f \mid\mid g) := \int_{-\infty}^{\infty} f(x) \log \frac{f(x)}{g(x)} \, dx.$$

Note that in writing

$$\sum_{k \in \mathbb{Z}} (\Delta f(k\Delta) + o(\Delta)) \log \frac{\Delta f(k\Delta) + o(\Delta)}{\Delta g f(k\Delta) + o(\Delta)},$$

the Δs in the log cancel.

The relative entropy will be nonnegative by convexity of $u \mapsto u \log u$ because it is

$$\int_{-\infty}^{\infty} g(x) \frac{f(x)}{g(x)} \log \frac{f(x)}{g(x)} \, dx.$$

1.4 Joint differential entropy

Definition 1.3. The joint differential entropy of X_1, \ldots, X_n (real-valued random variables with a joint density f) is

$$h(X_1,\ldots,X_n) = -\mathbb{E}[\log f(X_1,\ldots,X_n)].$$

Example 1.3. The most important example is when X_1, \ldots, X_n are jointly Gaussian random variables with invertible covariance matrix:

$$\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} m_1 \\ \vdots \\ m_n \end{bmatrix}, K \right),$$

where K is a symmetric, positive definite matrix. The joint density is

$$f(x_1,\ldots,x_n) = \frac{1}{(2\pi)^{n/2} (\det K)^{1/2}} e^{-\frac{1}{2}(x-m)^\top K^{-1}(x-m)}.$$

The joint differential entropy is

$$h(X_1, \dots, X_n) = \frac{1}{2} \log((2\pi e)^n \det K).$$

This can be understood by diagonalizing K. $K = U^{\top}DU$, where $U^{\top}U = I$ and $D = \text{diag}(\sigma_1^2, \ldots, \sigma_n^2)$. Then

$$h(X_1, \dots, X_n) = \sum_{\ell=1}^n \frac{1}{2} \log(2\pi e \sigma_\ell^2).$$

1.5 Mutual information

If X and Y have joint density f(x, y), then they will have marginal densities f(x) and f(y) respectively.

Definition 1.4. The **mutual information** is defined as

$$I(X;Y) = D(f(x,y) \mid\mid f(x)f(y)).$$

This will turn out to be

$$I(X;Y) = h(X) + h(Y) - h(X,Y),$$

when this expression makes sense. This will also be

$$I(X;Y) = h(X) - h(X \mid Y)$$

, if these quantities exist, where $h(X \mid Y)$ is the conditional differential entropy.

Definition 1.5. The conditional differential entropy is

$$h(X \mid Y) = \int_{-\infty}^{\infty} f(y)h(X \mid Y = y) \, dy,$$

where

$$h(X \mid Y = y) = -\int_{-\infty}^{\infty} f(x \mid y) \log f(x \mid y) \, dx.$$

1.6 Chain rules for differential entropy

We can write some chain rules.

Proposition 1.1 (Chain rule for differential entropy). When all these quantities make sense,

$$h(X_1, \dots, X_n) = h(X_1) + h(X_2 \mid X_1) + h(X_3 \mid X_1, X_2) + \dots + h(X_n \mid X_1, \dots, X_{n-1})$$

Proposition 1.2 (Chain rule for mutual information). When (X, Y_1, \ldots, Y_n) have a joint density,

 $I(X;Y_1,\ldots,Y_n) = I(X;Y_1) + I(X;Y_2 \mid Y_1) + I(X;Y_3 \mid Y_1,Y_2) + \cdots + I(X;Y_n \mid Y_1,\ldots,Y_{n-1}).$

1.7 Basic properties of differential entropy

Proposition 1.3. For any constant c, h(X + c) = h(X).

Proof. Adding c just translates the density.

Proposition 1.4. If $c \neq 0$, then $h(cX) = h(X) - \log |c|$.

Proof. The density of cX is $\frac{1}{|c|}f(x/c)$. So

$$h(cX) = \int_{-\infty}^{\infty} \frac{1}{|c|} f(x/c) \log \frac{1}{|c|} f(x/c) dx$$
$$= h(X) - \log |c|.$$

Remark 1.1. This is consistent with $X \sim N(0, \sigma^2) \iff cX \sim 0, c^2\sigma^2$. Here, $h(X) = \frac{1}{2}\log(2\pi e\sigma^2)$ and $h(cX) = \frac{1}{2}\log(2\pi e\sigma^2) + \log|c|$.

Proposition 1.5. If $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^2] = \sigma^2$, then

$$h(X) \le \frac{1}{2}\log(2\pi e\sigma^2).$$

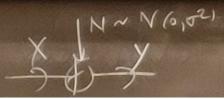
This upper bound is the entropy of the Gaussian.

Proof. Let $\phi(x)$ denote the $N(0, \sigma^2)$ density, i.e. $\phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-x^2/(2\sigma^2)}$. Write

$$\begin{split} 0 &\leq D(f \mid\mid \phi) \\ &= \int_{-\infty}^{\infty} f(x) \log \frac{f(x)}{\phi(x)} \\ &= -h(f) + (\log e) \int_{-\infty}^{\infty} f(x) \left[\frac{1}{2} \ln(2\pi\sigma^2) + \frac{x^2}{2\sigma^2} \right] dx \\ &= -h(f) + \frac{1}{2} \log(2\pi e\sigma^2). \end{split}$$

1.8 The additive white Gaussian noise channel model

This is a discrete time model. At each channel use, the input is a real number, say $x \in \mathbb{R}$. The output is a real number Y. Conditioned on $X = x, Y \sim \mathcal{N}(x, \sigma^2)$, where σ^2 is the variance of the noise.



Consider an input power constrained scenario and block based communication: We have an encoding map

$$e_n:[M_n]\to\mathbb{R}$$

and a decoding map

$$d_n: \mathbb{R}^n \to [M_n], \qquad Y^n(m).$$

Here X_n is the output of e_n , and Y_n is the input of d_n . Conditioned on $X^n(m) = x^n$,

$$Y^n \sim \mathcal{N}(x^n, \sigma^2 I),$$

i.e. the noise is iid over time. In other words,

$$f(y^n \mid x^n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y_i - x_i)/(2\sigma)}.$$

The **power constraint** P requires that each $X^n(m)$ satisfies

$$\sum_{i=1}^{n} (X_i(n))^2 \le nP.$$

Intuitively, M_n can be on the scale of

$$\frac{V_n(\sqrt{n(P+\sigma^2)})}{V_n(\sqrt{n\sigma^2})},$$

where $V_n(R)$ denotes the colume of the ball in \mathbb{R}^n of radius R.